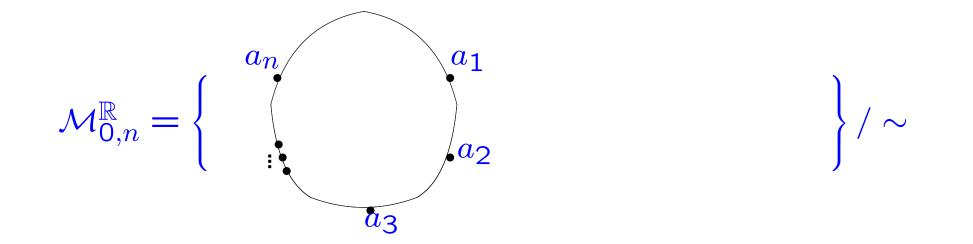
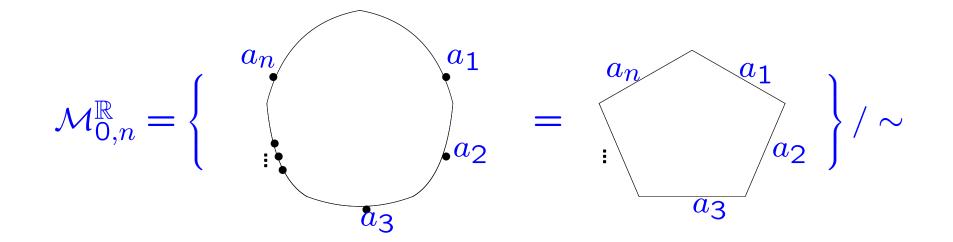
Computation of the first Stiefel-Whitney class of $\mathcal{M}_{0,n}^{\mathbb{R}}$

Elena Kreines

Moscow State University Department of Mathematics and Mechanics This is a joint work with Natalia Amburg.



— real algebraic curves of genus 0 with n marked and numbered points.



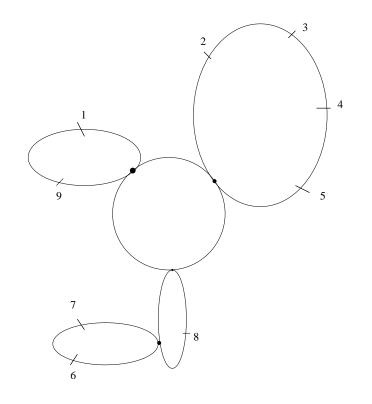
— real algebraic curves of genus 0 with n marked and numbered points.

 $\mathcal{M}_{0,n}^{\mathbb{R}}$ is the Deligne-Mumford compactification of $\mathcal{M}_{0,n}^{\mathbb{R}}$

I.e., moduli of "cacti-like" structures: 3-dimensional "trees" of flat circles with the points $\{1, 2, ..., n\}$ on them.

Definition. A *stable curve* of genus 0 with n marked points over \mathbb{R} is $C = C_1 \cup C_2 \cup \ldots \cup C_p$ with n different marked points $z_1, z_2, \ldots, z_n \in C$, s.t.

- $\forall z_i \exists !$ line $C_j : z_i \in C_j$.
- \forall pair $C_i, C_j, C_i \cap C_j$ is either \emptyset or $\{X\}$, and it is transversal.
- The graph of C (C_1, C_2, \ldots, C_p are vertices; edges are intersections) is a tree.
- The number of special points (marked or intersection) in C_j > 3 $\forall j = 1, ..., p$.
- *p* is the *number of components*.

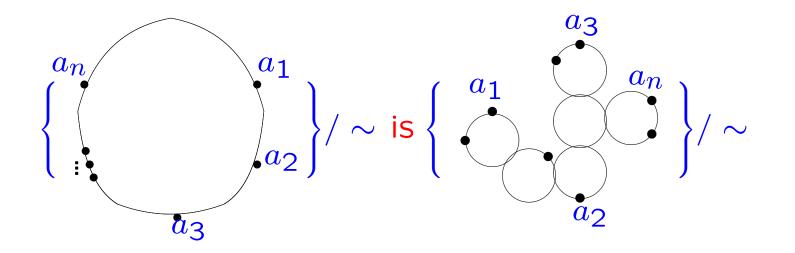


A stable curve over \mathbb{R} of genus 0 with 9 marked points

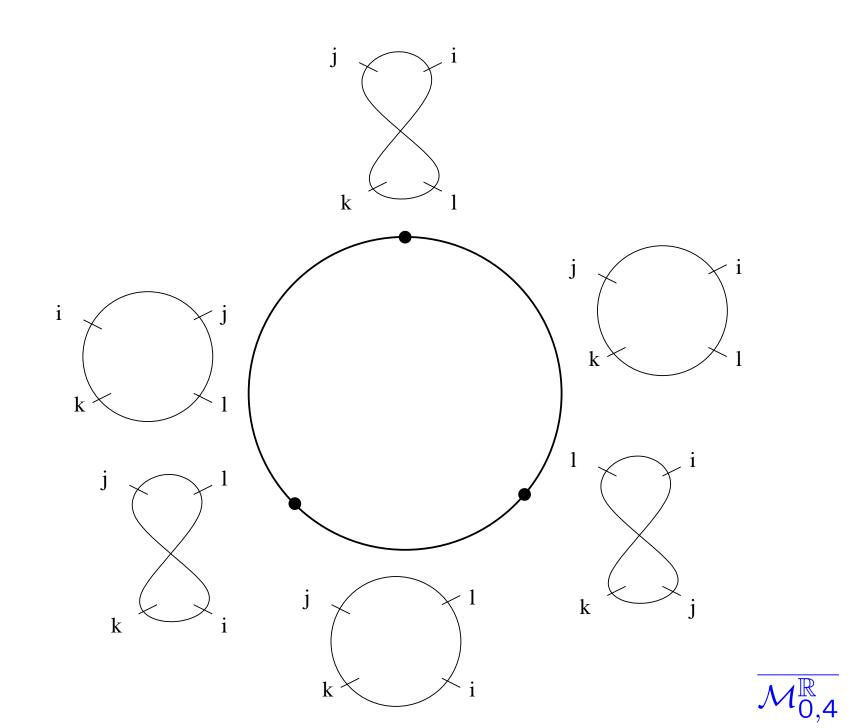
Definition.

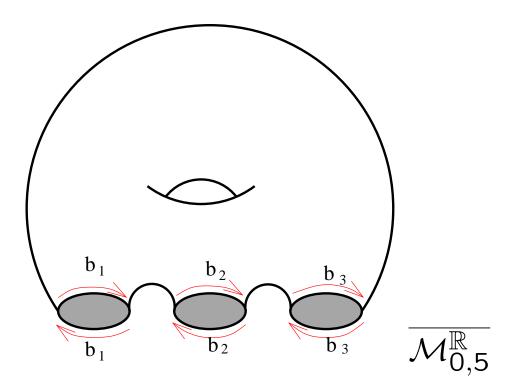
Let $C = (C_1, C_2, \dots, C_p, z_1, z_2, \dots, z_n)$ and $C' = (C'_1, C'_2, \dots, C'_p, z'_1, z'_2, \dots, z'_n)$ be stable curves of genus 0 with n points. C, C' are called *equivalent* if \exists iso. $f : C \to C'$: $f(z_i) = z'_i \forall i = 1, \dots, n$.

Definition. $n \geq 3$. Deligne-Mumford compactification of



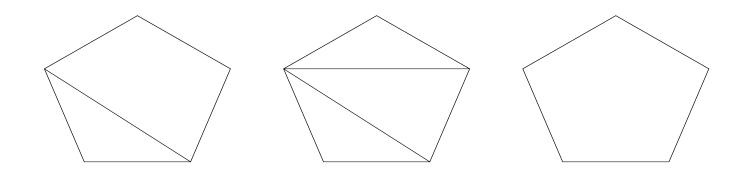
Theorem. [S. Devadoss, 1999] Let n > 4. Then the space $\mathcal{M}_{0,n}^{\mathbb{R}}$ is a non-orientable compact variety of real dimension $\dim(\overline{\mathcal{M}_{0,n}^{\mathbb{R}}}) = n - 3$.



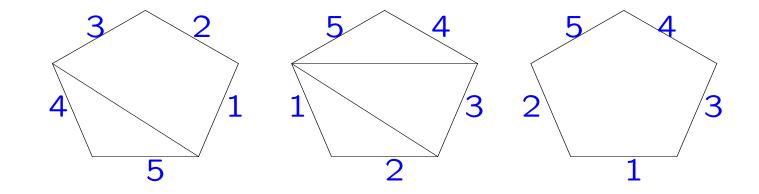


Cell decomposition of $\mathcal{M}_{0,n}^{\mathbb{R}}$ [S. Devadoss, 1999]

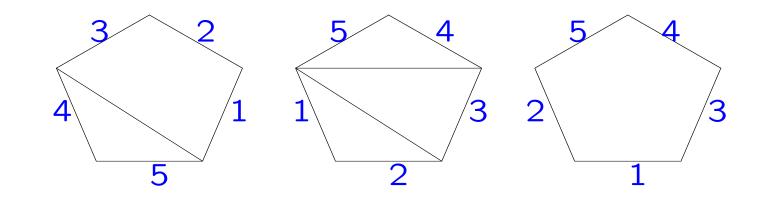
1. Consider right n-gons, possibly, with several non-intersecting outside the vertices diagonals:



- 1. Consider right n-gons, possibly, with several non-intersecting outside the vertices diagonals:
- 2. Mark their edges by $1, 2, \ldots, n$

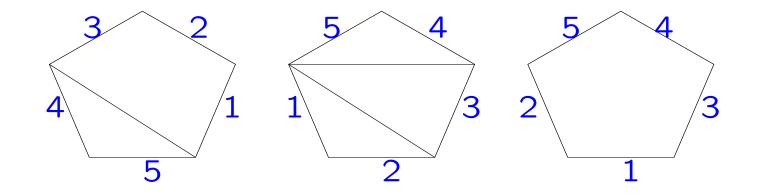


- 1. Consider right n-gons, possibly, with several non-intersecting outside the vertices diagonals:
- 2. Mark their edges by $1, 2, \ldots, n$



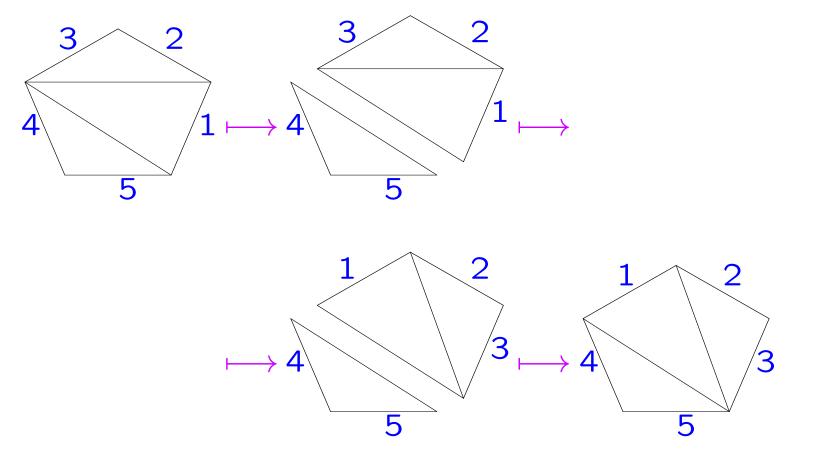
3. Identify polygons that be transformed to each other by the dihedral group action.

- 1. Right *n*-gons
- 2. Mark their edges by $1, 2, \ldots, n$



- 3. Action of the dihedral group the same.
- 4. Identify polydons that be transformed to each other by the series of twist operations.

Twist operation:



Cells of $\overline{\mathcal{M}_{0,n}^{\mathbb{R}}}$ — such *n*-gons

Cells of $\overline{\mathcal{M}_{0,n}^{\mathbb{R}}}$ — such *n*-gons Marked points — sides of *n*-gons Intersection points — diagonals

Marked points — sides of n-gons

Intersection points — diagonals

cells of MAX dim — n-gons without diagonals

Marked points — sides of n-gons

Intersection points — diagonals

cells of MAX dim — n-gons without diagonals

cells of codim 1 - n-gons with 1 diagonal — consist exactly of

2-component stable curves

Marked points — sides of n-gons

Intersection points — diagonals

cells of MAX dim — n-gons without diagonals

cells of codim 1 - n-gons with 1 diagonal — consist exactly of

2-component stable curves

cells of codim 2 — n-gons with 2 diagonal — 3-component stable

curves

Marked points — sides of n-gons

Intersection points — diagonals

cells of MAX dim — n-gons without diagonals

cells of codim 1 - n-gons with 1 diagonal — consist exactly of

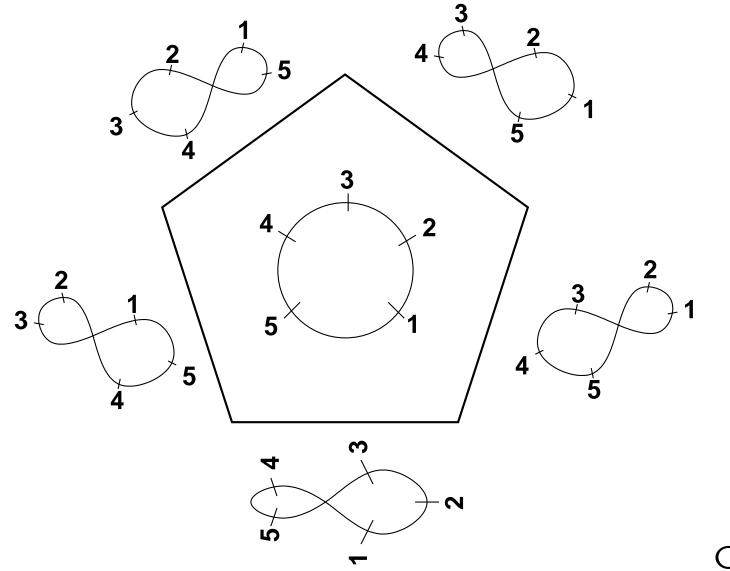
2-component stable curves

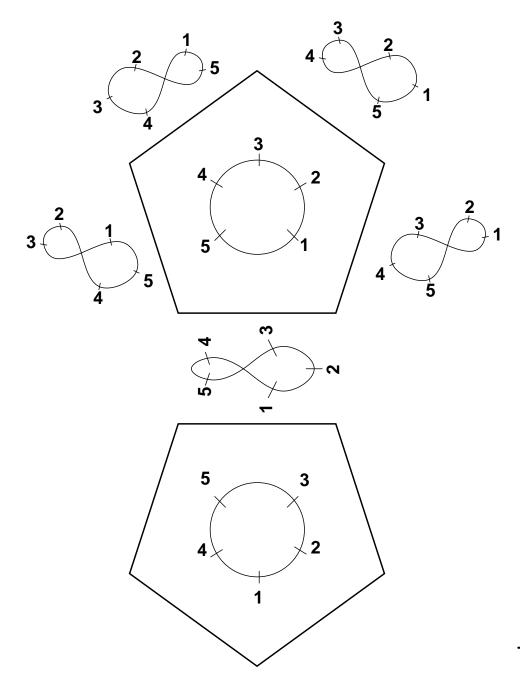
cells of codim 2 — n-gons with 2 diagonal — 3-component stable

curves

cells of codim k - n-gons with k diagonal - k + 1-component stable curves

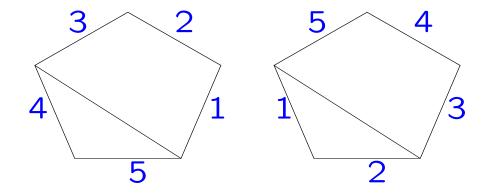
- The graph of C is a tree diagonals do not intersect inside the polygon
- The number of special points in $C_j \geq 3 \; \forall \; j=1,\ldots,p$ diagonals are diagonals, i.e., each part of the "big" polygon is at least a 3-gon





Two adjoint cells of $\overline{\mathcal{M}_{0,5}^{\mathbb{R}}}$.

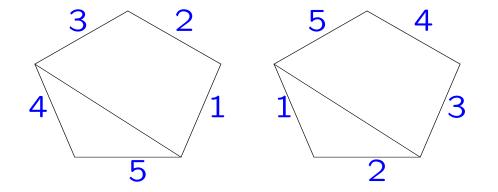
Boundary cells:



Bottom edge

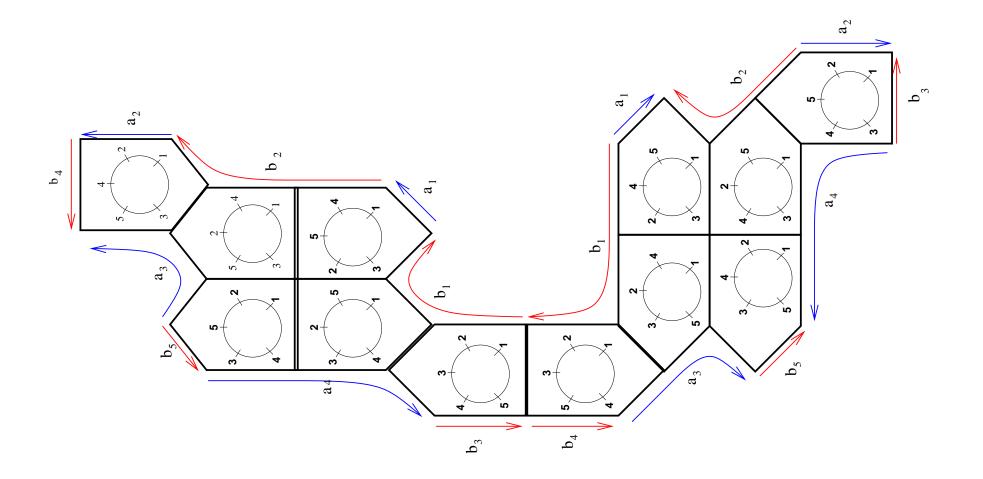
Right-lower edge

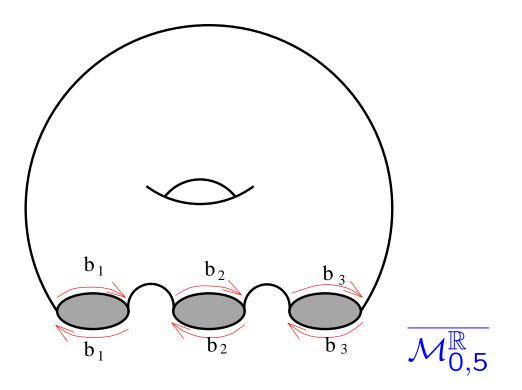
Boundary cells:



Bottom edge Right-lower edge Proposition. Cell decomposition of $\overline{\mathcal{M}_{0,n}^{\mathbb{R}}}$ contains $\frac{(n-1)!}{2}$ cells of the maximal dimension n-3.

 $n = 5 \implies 12$ cells





Stiefel-Whitney class of $\mathcal{M}_{0,n}^{\mathbb{R}}$

StWh are topological invariants of a real vector bundles that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle, is a $\mathbb{Z}/2\mathbb{Z}$ -characteristic class associated to real vector bundles.

StWh are indexed from 0 to d — the dimension of the vector space fiber of the vector bundle.

StWh \neq 0 for some $i \Rightarrow \not\exists (n - i + 1)$ everywhere linearly independent sections of the vector bundle.

 $0 \neq n$ 'th StWh indicates that \forall section of the bundle must vanish at some point.

 $0 \neq 1$ 'st StWh indicates that the vector bundle is not orientable.

We consider the homological class W_{n-4} , which is Poincaré dual to the 1st StWh class of $\overline{\mathcal{M}_{0,n}^{\mathbb{R}}}$.

Theorem. [Milnor, Stasheff] Let M be a smooth compact variety without a boundary, K be a cell decomposition of M, $k_j \,\subset K$ denote the cells of the maximal dimension d. Let us fix the orientation on the cells of MAX dim $\overline{k_j}$. Then

$$W_{d-1}(M) = \left(\frac{1}{2}\sum \partial \overline{k_j}\right) \mod 2$$

Theorem. [AK, 2014]

 $n \geq 5$, $\mathcal{M}_{0,n}^{\mathbb{R}}$, points $\{1, 2, ..., n\}$. $\overline{\mathcal{M}_{0,n}^{\mathbb{R}}}$ is Deligne-Mumford compactification. Then $W_{n-4}(\overline{\mathcal{M}_{0,n}^{\mathbb{R}}})$ consists exactly from those cells of codim 1, that satisfy: irreducible component of the curve which contains ≤ 1 point from the set $\{1, 2, 3\}$ contains an odd number of points from $\{1, 2, ..., n\}$. **Corollary.** $n \ge 6$ is even, $\mathcal{M}_{0,n}^{\mathbb{R}}$ is the Deligne-Mumford compactification of $\mathcal{M}_{0,n}^{\mathbb{R}}$. Then $W_{n-4}(\mathcal{M}_{0,n}^{\mathbb{R}})$ consists exactly from the cells of codim 1, such that each irreducible component of the curve contains an odd number of marked points. **Definition.** A *coordinate map* on the space $\mathcal{M}_{0,n}^{\mathbb{R}}$ is

$$\varphi:\mathcal{M}_{0,n}^{\mathbb{R}}
ightarrow \mathbb{R}^{n-3}$$

Let $(\mathbb{P}_1(\mathbb{R}), z_1, \ldots, z_n) \in \mathcal{M}_{0,n}^{\mathbb{R}}$, $z_i \in \mathbb{P}_1(\mathbb{R})$, we fix

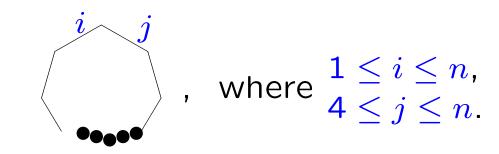
 $z_1 = 0, z_2 = 1, z_3 = \infty$

Then

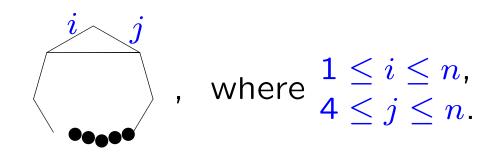
$$\varphi(\mathbb{P}_1(\mathbb{R}), z_1, \ldots, z_n) = (z_4, \ldots, z_n).$$

Standard orientation of $\mathbb{R}^{n-3} \Rightarrow$ orientation on cells of MAX dim

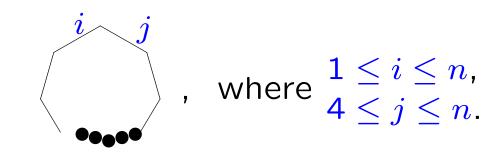
Cells of the maximal dimension



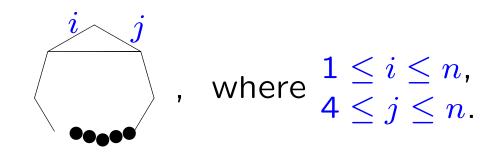
Boundaries by glue *i*, *j*, $1 \le i \le n$, $4 \le j \le n$, cells $K_{ij|l_1...l_{n-2}}$:



Cells of the maximal dimension

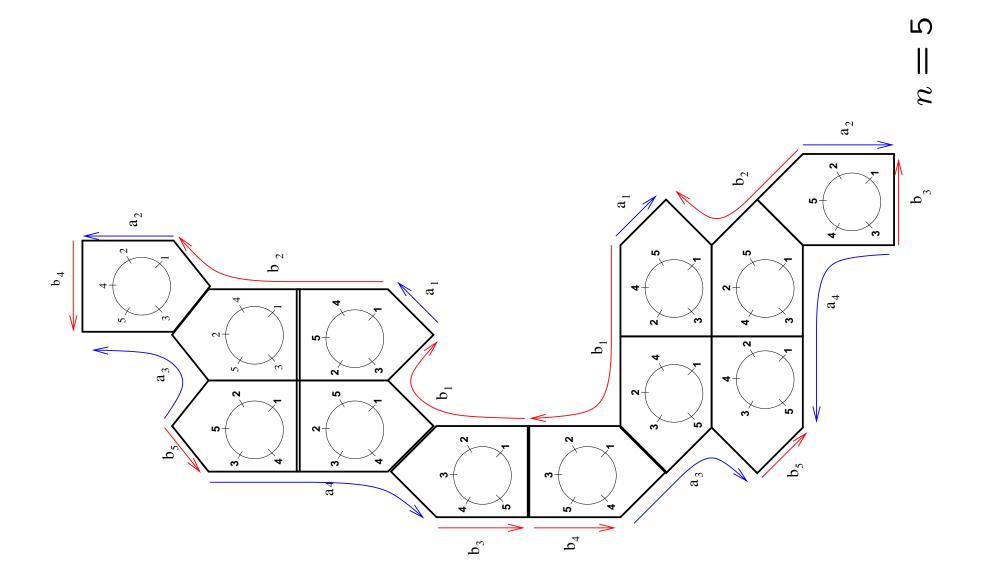


Boundaries by glue *i*, *j*, $1 \le i \le n$, $4 \le j \le n$, cells $K_{ij|l_1...l_{n-2}}$:

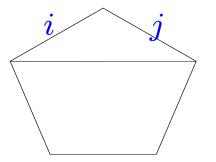


Lemma. $\forall n \geq 5 \text{ and } \forall i, j, 1 \leq i \leq n, 4 \leq j \leq n$ the cells $K_{ij|l_1...l_{n-2}}$ are not in the class $W_{n-4}(\overline{\mathcal{M}_{0,n}^{\mathbb{R}}})$. *Proof.* $\forall i, j, 1 \leq i \leq n, 4 \leq j \leq n$ the cells of MAX dim with

common boundary $K_{ij|l_1...l_{n-2}}$ look like So, $K_{ij|l_1...l_{n-2}}$ is in the sum twice with the opposite signs, hence, it is not in the class $W_{n-4}(\overline{\mathcal{M}_{0,n}^{\mathbb{R}}})$.

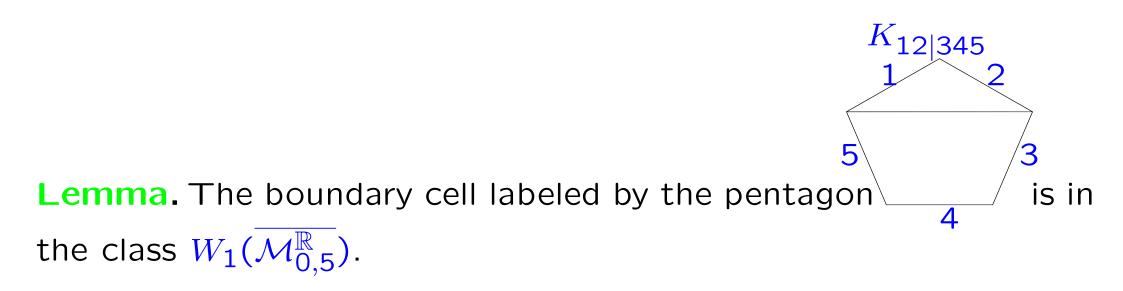


By Lemma it remains to consider the cells of codim 1 of the form



where $1 \leq i, j \leq 3$.

We start with i = 1, j = 2.

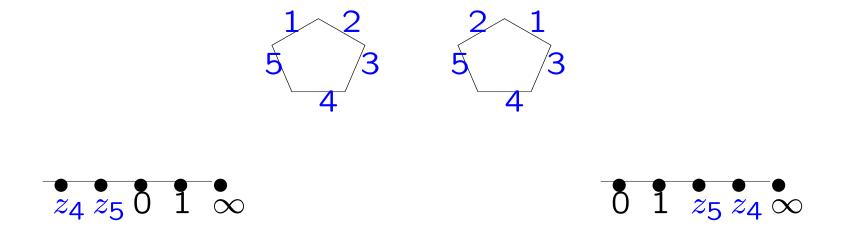


Proof. Consider the coordinates on $\mathcal{M}_{0,5}^{\mathbb{R}}$ which can be prolonged to this boundary: $\phi_1 : \mathcal{M}_{0,5}^{\mathbb{R}} \to \mathbb{R}^2$, $(\mathbb{P}_1(\mathbb{R}), y_1, \dots, y_5) \in \mathcal{M}_{0,5}^{\mathbb{R}}$ with parametrization $\mathbb{P}_1(\mathbb{R})$: $y_3 = \infty, y_4 = 0, y_5 = 1$. We set $\phi_1(\mathbb{P}_1(\mathbb{R}), y_1, \dots, y_5) = (y_1, y_2)$.

$$i \ 1 \ 2 \ 3 \ 4 \ 5 \ z - ext{coordinates} \ 0 \ 1 \ \infty \ z_4 \ z_5 \ y - ext{coordinates} \ y_1 \ y_2 \ \infty \ 0 \ 1$$

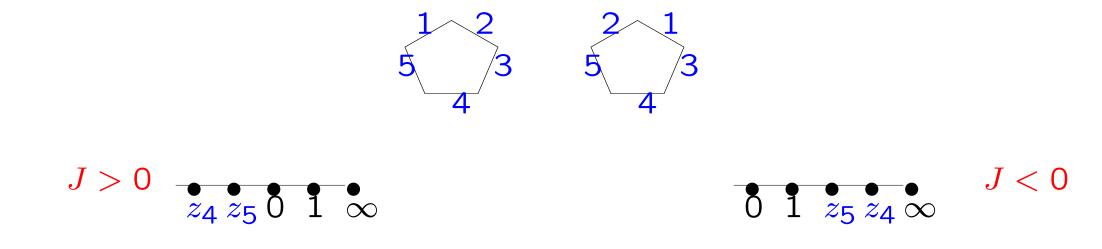
We seek $f(t) = \frac{at+b}{ct+d}$ and compute the Jacobian: $J = \det \begin{pmatrix} \frac{-z_5}{(z_4-z_5)^2} & \frac{z_4}{(z_4-z_5)^2} \\ \frac{1-z_5}{(z_4-z_5)^2} & \frac{1+z_4}{(z_4-z_5)^2} \end{pmatrix} = \frac{1}{(z_4-z_5)^4} (z_5-z_4).$

 $K_{12|345}$ is the common boundary of the following two cells:



We seek $f(t) = \frac{at+b}{ct+d}$ and compute the Jacobian: $J = \det \begin{pmatrix} \frac{-z_5}{(z_4-z_5)^2} & \frac{z_4}{(z_4-z_5)^2} \\ \frac{1-z_5}{(z_4-z_5)^2} & \frac{1+z_4}{(z_4-z_5)^2} \end{pmatrix} = \frac{1}{(z_4-z_5)^4} (z_5-z_4).$

 $K_{12|345}$ is the common boundary of the following two cells:



- In the parametrization (y_1, y_2) : opposite orientations,
- Jacobians have the opposite signs \Rightarrow
- In the parametrization (z_4, z_5) : the same orientation.
- Hence, $K_{12|345}$ is included twice to the expression for $W_1(\mathcal{M}_{0,5}^{\mathbb{R}})$.

In the parametrization (y_1, y_2) : opposite orientations, Jacobians have the opposite signs \Rightarrow

In the parametrization (z_4, z_5) : the same orientation.

Hence, $K_{12|345}$ is included twice to the expression for $W_1(\mathcal{M}_{0.5}^{\mathbb{R}})$.

$$W_{d-1}(M) = \left(\frac{1}{2}\sum \partial \overline{k_j}\right) \mod 2$$

In the parametrization (y_1, y_2) : opposite orientations, Jacobians have the opposite signs \Rightarrow

In the parametrization (z_4, z_5) : the same orientation.

Hence, $K_{12|345}$ is included twice to the expression for $W_1(\mathcal{M}_{0,5}^{\mathbb{R}})$.

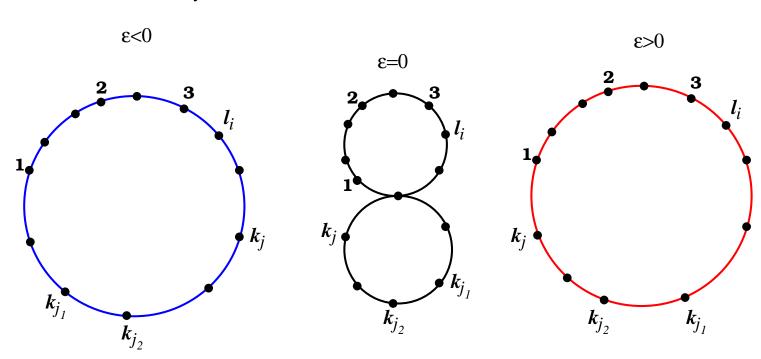
$$W_{d-1}(M) = \left(\frac{1}{2}\sum \partial \overline{k_j}\right) \mod 2.$$

 $\Rightarrow W_1(\mathcal{M}_{0,5}^{\mathbb{R}})$ contains the cell labeled by $K_{12|345}$.

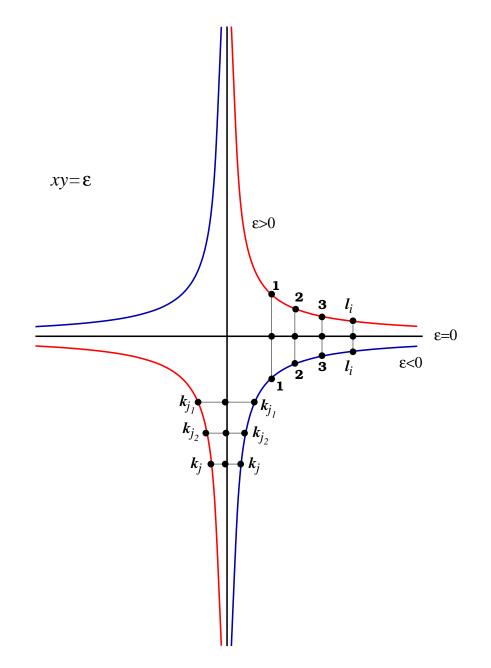
Computation of $W_{n-4}(\mathcal{M}_{0,n}^{\mathbb{R}})$ for $n \ge 6$ Special coordinates!

Draw the curve $\mathbb{P}_1(\mathbb{R})$ in the form of hyperbola $xy = \varepsilon$.

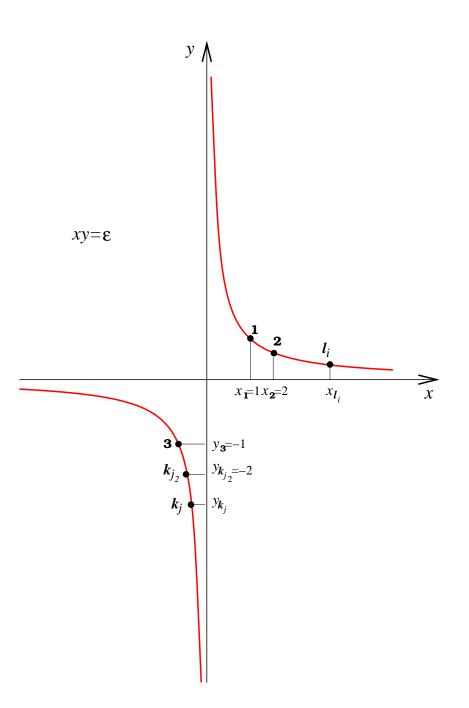
Approaching the boundary — taking the limit $\varepsilon \to 0$ under the fixed x or y of marked points.



 $xy = \varepsilon$



Lemma. Let $n \ge 6$ and all three points 1, 2, 3 are in one component of the boundary. Then this cell is in the class $W_{n-4}(\overline{\mathcal{M}_{0,n}^{\mathbb{R}}})$ iff the boundary component does not containing 1, 2, 3, contain odd number of the marked points.



Lemma. Let $n \ge 6$ and only two of the points 1, 2, 3 are in the same component of the boundary K. Then K is in $W_{n-4}(\overline{\mathcal{M}_{0,n}^{\mathbb{R}}})$ iff \exists odd number of marked points on the component of K which contains the third point from the set $\{1, 2, 3\}$.